\qquad

C. U. SHAH UNIVERSITY Winter Examination-2020

Subject Name: Operations Research
Subject Code: 5SC01OPR1

Branch: M.Sc. (Mathematics)
Semester: 1
Date: 15/03/2021
Time: 11:00 To 02:00
Marks: 70

Instructions:

(1) Use of Programmable calculator and any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.
SECTION - I
Q-1 Attempt the following questions.(07)
a. How degeneracy is recognized when using the simplex algorithm? 02
b. Define: (i) Basic solution (ii) Basic feasible solution. 02
c. If dual has an unbounded solution, then primal has

\qquad
. 01
d. Define: Convex Set. 01
e. The graphical method can only be used when there are \qquad decision variables.

Q-2 Attempt all questions.

a. A farmer has a 100-acre farm. He can sell all tomatoes, lettuce or radishes and can get a price of Rs. 1.00 per kg for tomatoes, Rs. 0.75 a heap for lettuce and Rs. 2.00 per kg for radishes. The average yield per acre is 2,000 kg of tomatoes, 3,000 heaps of lettuce and $1,000 \mathrm{~kg}$ of radishes. Fertilizers are available at Rs. 0.50 per kg and the amount required per acre is 100 kg each for tomatoes and lettuce and 50 kg for radishes.Labour required for sowing, cultivating and harvesting per acre is 5 man-days for tomatoes and radishes and 6 man-days for lettuce. A total of 400 man-days of labour are available at Rs. 20 per man-day. Formulate this problem as a linear programming model to maximize the farmer's total profit.
b. Solve the following Linear Programming Problem by using Penalty (BigM) method.
Maximize $z=2 x_{1}+x_{2}+3 x_{3}$
Subject to

$$
\begin{aligned}
x_{1}+x_{2}+2 x_{3} & \leq 5 \\
2 x_{1}+3 x_{2}+4 x_{3} & =12
\end{aligned}
$$

and $x_{1}, x_{2}, x_{3} \geq 0$

OR

Attempt all questions.
a. Using graphical method to solve the following LP problem.

Maximize $z=6 x_{1}+4 x_{2}$
Subject to

$$
\begin{gathered}
-2 x_{1}+x_{2} \leq 2 \\
x_{1}-x_{2} \leq 2 \\
3 x_{1}+2 x_{2} \leq 9
\end{gathered}
$$

and $x_{1}, x_{2} \geq 0$
b. Solve the followingLPproblem by using simplex method.

Maximize $z=3 x_{1}+2 x_{2}+5 x_{3}$
Subject to

$$
\begin{array}{cc}
x_{1}+2 x_{2}+x_{3} & \leq 430 \\
3 x_{1}+2 x_{3} & \leq 260 \\
x_{1}+4 x_{2} & \leq 420
\end{array}
$$

and $\quad x_{1}, x_{2}, x_{3} \geq 0$
a. Write the dual of the following linear programming problem.
(i) $\operatorname{Minimizez}_{x}=x_{1}-2 x_{2}+3 x_{3}$

Subject to

$$
\begin{gathered}
-2 x_{1}+x_{2}+3 x_{3}=2 \\
2 x_{1}+3 x_{2}+4 x_{3}=1
\end{gathered}
$$

and $\quad x_{1}, x_{2} \geq 0$
(ii) $\operatorname{Maximize}_{x}=x_{1}+2 x_{2}+x_{3}$

Subject to

$$
\begin{array}{r}
2 x_{1}+x_{2}-x_{3} \leq 2 \\
-2 x_{1}+x_{2}-5 x_{3} \geq-6 \\
4 x_{1}+x_{2}+x_{3} \leq 6
\end{array}
$$

and $\quad x_{1}, x_{2}, x_{3} \geq 0$
b. Use two-phase method to solve the following LP problem.

Minimize $z=5 x_{1}+8 x_{2}$
Subject to

$$
\begin{gathered}
3 x_{1}+2 x_{2} \geq 3 \\
x_{1}+4 x_{2} \geq 4 \\
x_{1}+x_{2} \leq 5
\end{gathered}
$$

and $\quad x_{1}, x_{2} \geq 0$

OR

Attempt all questions.
a. Use graphical method to solve the following LP problem.

Maximize $z=3 x_{1}+2 x_{2}$
Subject to

$$
\begin{aligned}
& x_{1}-x_{2} \geq 1 \\
& x_{1}+x_{2} \geq 3
\end{aligned}
$$

and $\quad x_{1}, x_{2} \geq 0$
b. Prove that dual of dual is primal.
c. If $S=\left\{\left(x_{1}, x_{2}\right): x_{1} \cdot x_{2} \geq 1, x_{1}, x_{2} \geq 0\right\}$, then show that S is convex set.

Attempt the following questions.

a. Explain general mathematical model of transportation problem.
b. Write Hessian matrix with four decision variables.
c. Which method gives best approximation to find out initial basic feasible solution of transportation problem?
d. True/False: The Assignment problem is a special type of linear programming problem.
e. True/False: A dummy row or column is introduced in the transportation method in order to handle an unbalanced problem.

Attempt all questions.

a. Explain Least cost method. Find the initial basic feasible solution to the following transportation problem using North-west corner method.

Origin	Destination				Supply
	D_{1}	D_{2}	D_{3}	D_{4}	
	06	04	01	05	14
	08	09	02	07	16
	04	03	06	02	
	06	10	15	04	35

b. There are four jobs to be assigned to five machines. Only one job can be assigned to one machine. The amount of time in hours required for the jobs per machine are given in the following table

Jobs	Machines				
1	A	B	C	D	E
	04	03	06	02	07
3	10	12	11	14	16
4	03	02	01	05	
08	07	06	09	06	

Find an optimum assignment of job to machines to minimize the total processing time and also find out for which machine no job is assigned. What is the total processing time to compete the job?

OR

Attempt all questions.
a. Solve the following transportation problem by using MODI method.

Source	Destination				Supply
	A	B	C	D	
1	11	20	07	08	50
2	21	16	20	12	40
3	08	12	08	09	70
Demand	30	25	35	40	

b. Explain Hungarian method for solving assignment problem.

Q-6

Attempt all questions.
a. Explain the steps of Modified distributive method for transportation
b. Use the method of Langrage's multipliers to solve the following non-linear programming problem.

Minimize $z=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$
Subject to

$$
x_{1}+x_{2} \geq 1
$$

$$
2 x_{1}+3 x_{2} \geq 2
$$

a. Solve the given linear programming problem using dual simplex method.

Minimize $z=3 x_{1}+x_{2}$
Subject to
and \quad
$x_{1}+3 x_{2} \geq 2$
$x_{1}, x_{2} \geq 0$

$$
\text { and } \quad x_{1}, x_{2} \geq 0
$$

路

$$
\begin{aligned}
& \quad x_{1}+x_{2}+3 x_{3}=2 \\
& 5 x_{1}+2 x_{2}+x_{3}=5 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

OR problem.
b. Use the Kuhn-Tucker conditions to solve the following non-linear programming problem.

Maximize $z=2 x_{1}-x_{1}^{2}+x_{2}$
Subject to

$$
\begin{array}{r}
2 x_{1}+3 x_{2} \leq 6 \\
2 x_{1}+\quad x_{2} \leq 4
\end{array}
$$

and $\quad x_{1}, x_{2} \geq 0$

